

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS ADVANCED (INCORPORATING EXTENSION 1) YEAR 11 COURSE

Topic summary and exercises:

(A) (x_1) The Exponential Function

Name:

Initial version by H. Lam, October 2013, Revised June 2019 for latest syllabus. Last updated June 1, 2021. Various corrections by students & members of the Department of Mathematics at North Sydney Boys and Normanhurst Boys High Schools.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under 🕲 CC BY 2.0.

Symbols used

A Beware! Heed warning.

A) Mathematics Advanced content.

(x1) Mathematics Extension 1 content.

Literacy: note new word/phrase.

- $\mathbb N \;$ the set of natural numbers
- $\mathbbm{Z}~$ the set of integers
- ${\mathbb Q}\,$ the set of rational numbers
- ${\mathbb R}\,$ the set of real numbers
- $\forall \ \, \text{for all} \quad$

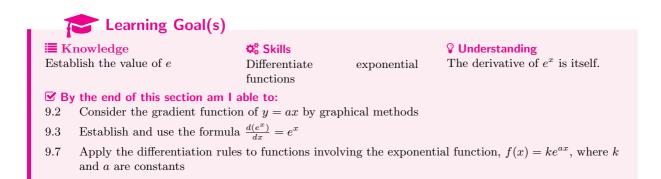
Syllabus outcomes addressed

MA11-6 manipulates and solves expressions using the logarithmic and index laws, and uses logarithms and exponential functions to solve practical problems

Syllabus subtopics

MA-E1 (1.3, 1.4) Logarithms and Exponentials

Gentle reminder


- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *CambridgeMATHS Mathematics Extension 1* (Pender, Sadler, Ward, Dorofaeff, & Shea, 2019b) or *CambridgeMATHS Mathematics Advanced* (Pender, Sadler, Ward, Dorofaeff, & Shea, 2019a) will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book!

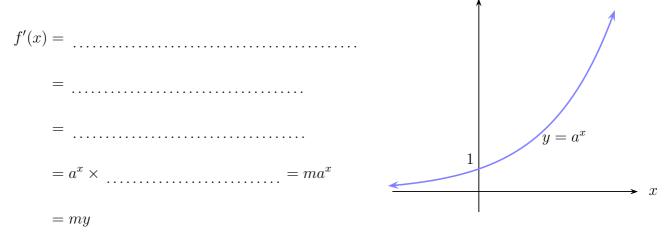
Contents

1	Diff	erentiation of the exponential function	4
	1.1	From first principles	4
	1.2	Miscellaneous properties	6
		$1.2.1 e^x \dots \dots \dots \dots \dots \dots \dots \dots \dots $	6
		1.2.2 Derivative of a^x	6
	1.3	\mathcal{C} Curve transformations	$\overline{7}$
		Derivatives of e^x	$\overline{7}$
		1.4.1 Standard questions	$\overline{7}$
		1.4.2 Harder derivatives	9
2	Apr	olications of differentiation	13
	2.1	Tangents and normals	13
	2.2	Curve sketching	15
	2.3	(x1) Inverse functions	24
		\swarrow Taylor Series expansion	27
3	Rat	es of change	29
		\square Logarithms base e	30
	3.2	Exponential rates of change	
Re	efere	nces	34

Section 1

Differentiation of the exponential function

1.1 From first principles


- Goal: find the gradient of the tangent to $f(x) = a^x$.
 - First by finding gradient of the tangent to $f(x) = a^x$ at (0, 1).
- Draw from P(0,1) to $Q\left(\delta x, a^{\delta x}\right)$ on the curve to approximate tangent.
- Gradient of:

• Gradient (m) of tangent at (0,1)

• *m* only exists as a limit, but will need this again (see next slide).

Gradient of tangent

Differentiating $f(x) = a^x$ from first principles, using index laws:

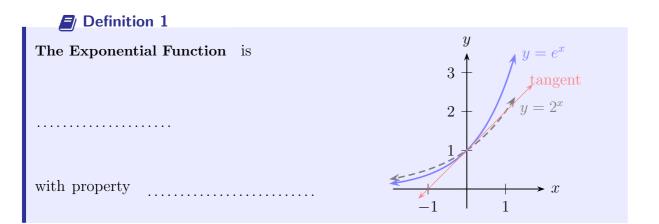
y

Laws/Results

Derivative of $y = a^x$ at any x value is the function itself, multiplied by the gradient of the function at (0, 1).

A What is the the gradient of the tangent at x = 0?

- Numerical value of m is still unknown.
- *m* will change as the value of *a* changes.
- Testing a few values of a,


$$a = 2 \qquad m = \frac{2^{0.000 \ 1} - 1}{0.000 \ 1} \approx \dots$$

$$a = 2.5 \qquad m = \frac{2.5^{0.000 \ 1} - 1}{0.000 \ 1} \approx \dots$$

$$a = 2.7 \qquad m = \frac{2.7^{0.000 \ 1} - 1}{0.000 \ 1} \approx \dots$$

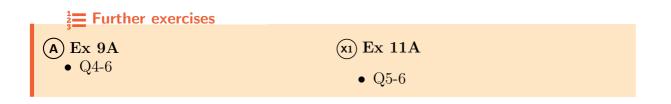
$$a = 2.8 \qquad m = \frac{2.8^{0.000 \ 1} - 1}{0.000 \ 1} \approx \dots$$

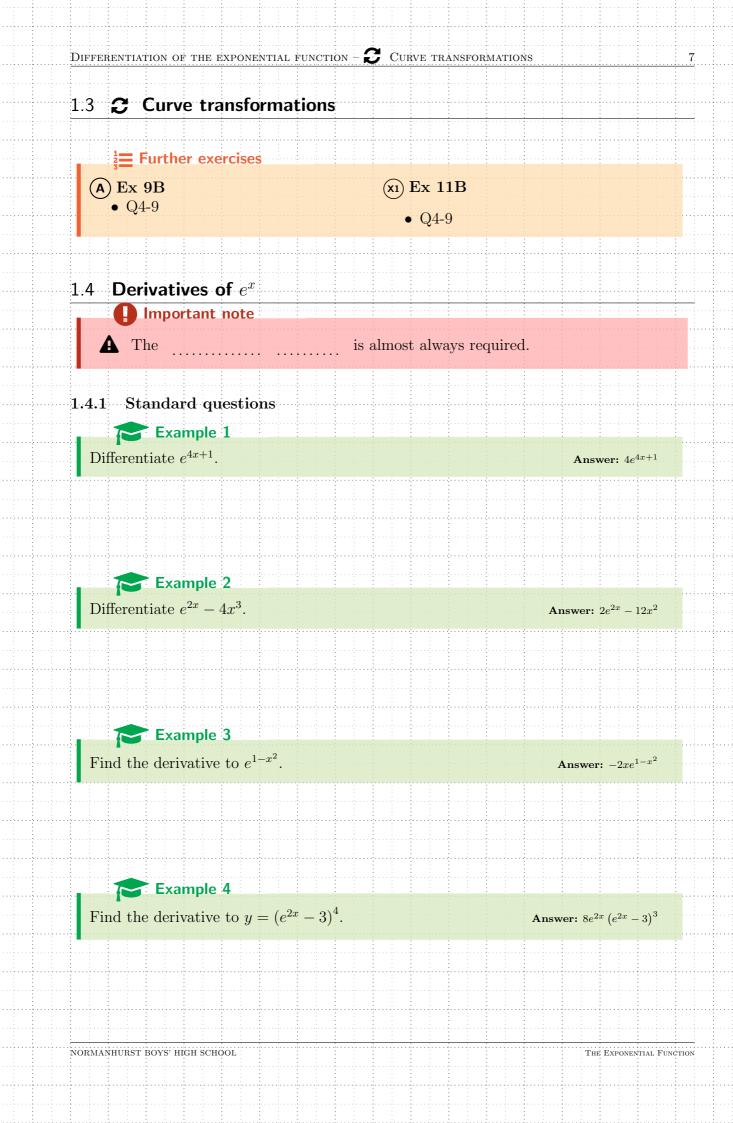
there will be a value (denote to be e) somewhere between 2.7 and 2.8 that makes m = 1 and $\frac{dy}{dx} = e^x = y$, i.e. the derivative is the function itself.

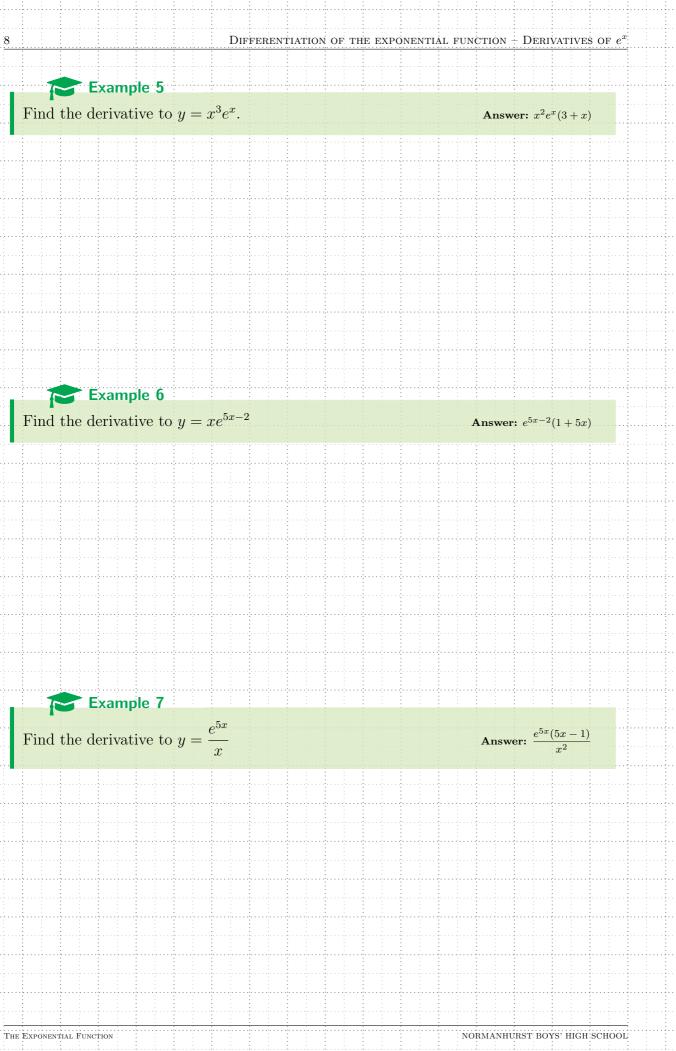
1.2 Miscellaneous properties

1.2.1 e^x

 $f(x) = e^x$:

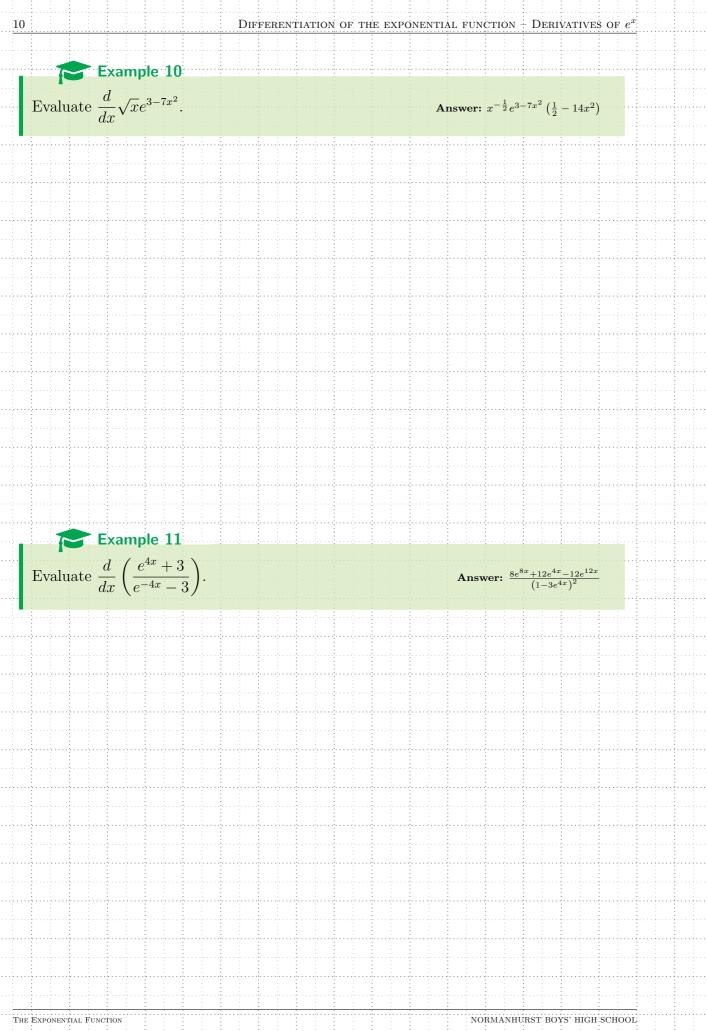

- $e \approx$ to 12 d.p., and is transcendental like π .
- $f'(0) = e^0 = 1$. Notice $f'(0) = ma^0 = m \neq 1$ for other values of a > 1.
- $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$

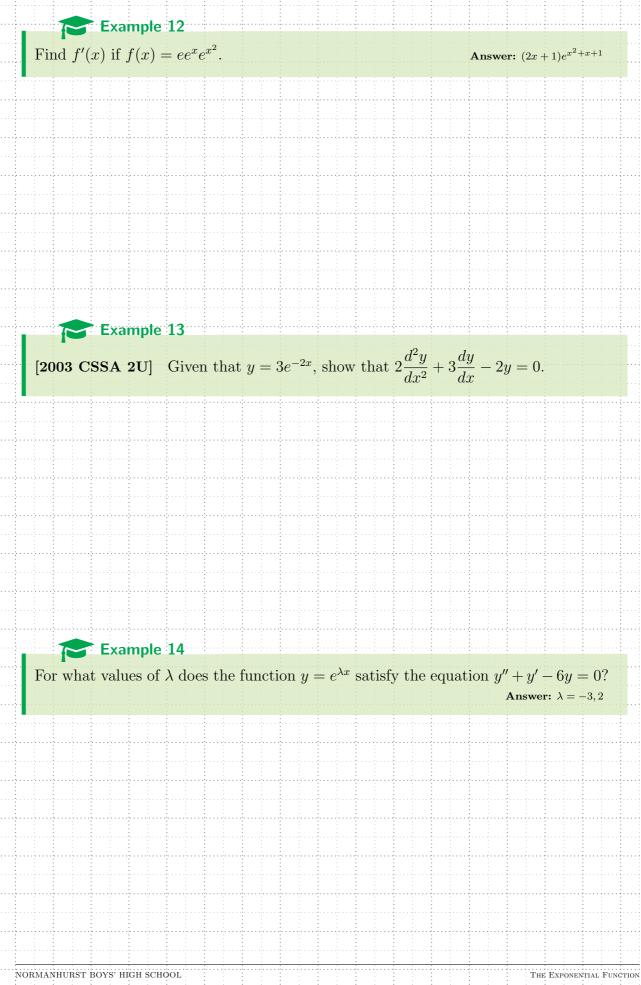

1.2.2 Derivative of a^x


- Change base to e^x .
- Derivation of change of base rule:

Steps

- 1. Let $y = a^x$.
- 2. Take logarithm of base *e* on both sides, resulting in
- **3.** Exponentiate both sides to obtain explicit equation in y:



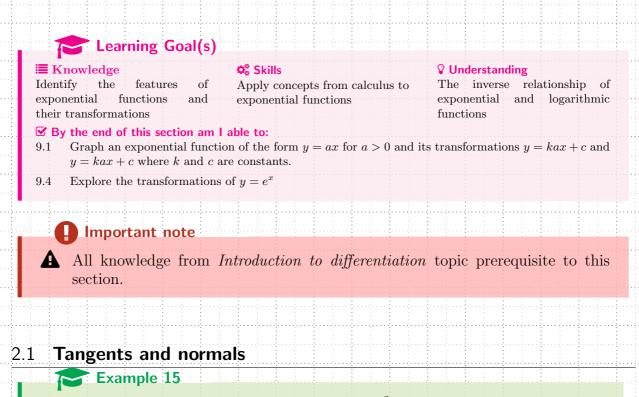


								•				• • • •				•						• • • • • • • • • •	• • • • •				
1.4	1.2		Ha	rd	\mathbf{er}	de	eriv	vat	ive	es		• • • • •		: : :		• • • • •		 	 	 			• • • • • •			•••••	
		T	9	E	xai	mp	le	8								*											
	Fir	nd	the	o de	rix	<i>v</i> at:	ive	to	11	- 	e	x								Δng	we	. e	x (1	+2	$\frac{x-x}{x^2)^2}$	$x^{2})$	
		iu	UIIC		,11	rate.	1.00	00	9		1 –	$-x^2$	2							 	, , , , , , , , , , , , , , , , , , ,		· · · (1	- :	$(x^2)^2$		
															· · · · · · ·												
 														÷	 			 	 	 						•••••	
										- 				 			 	 	 	 						•••••	
														÷	: 		 	 	 	 			•••••	•••••			
												• • •		 		• • •						• • • • • • • • •					
																	 	 	 	 				••••			
																						• • • • • • • • •					
														 			 	 	 	 				••••			
															· · · · · ·												
																						•					
		F		E	xai	mp	le	9									 	 	 	 							
	Eva	alu	ate	$\frac{d}{d}$	$\frac{l}{-}$ (e^{-}	$\frac{1}{x}$															An	swe	e r: 2	$c^{-2}\epsilon$	$-\frac{1}{x}$	
				d:	x \)																				
												* * * *				- 											
· · · · · · · · · · · · · · · · · · ·									•••••					 	·····									••••			
																	 	 	 	 				•••••			
· • • • •																						• •					
•														 	····		 	 	 	 			•••••	••••	•••••	•••••	••••
												· · · · · · ·			·····	· · · · · · · · · · · · · · · · · · ·	 	 	 			· · · · · · · ·					
																						•					
														 	· · · · ·		 	 	 	 	· · · · · ·			•••••	•••••		••••
															·····				 	 		· · · · · · · ·					

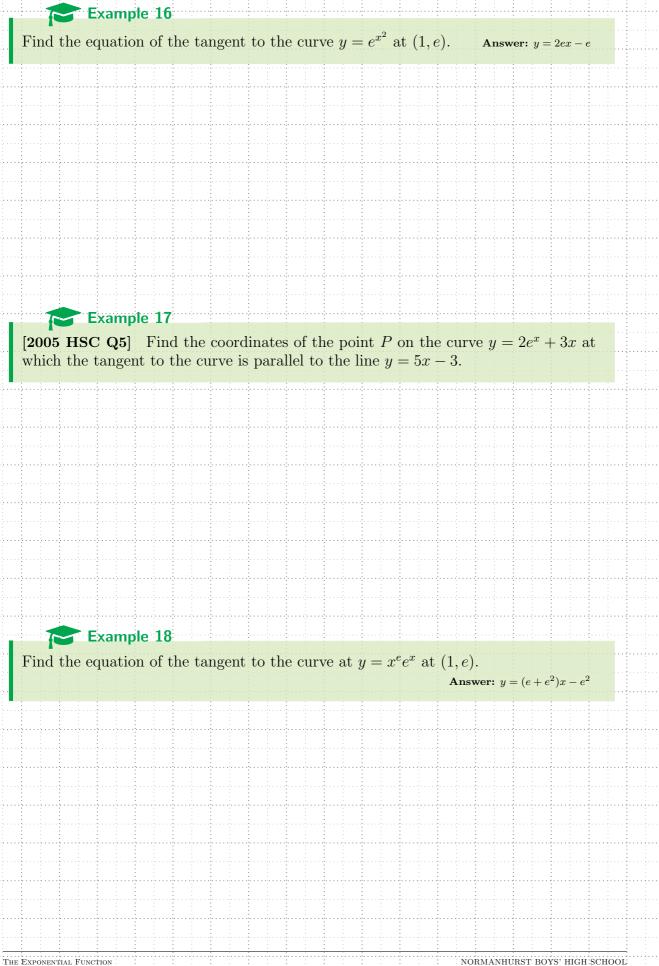
The Exponential Function

Supplementary Exercises

- **1.** Differentiate the following with respect to *x*.
 - (p) $y = e^{x \sqrt{x}}$ (a) $y = 7e^x$ (i) $y = xe^x$ (q) $y = e^{1+\sqrt{x}}$ (j) $y = x^2 e^{-x}$ (b) $y = \frac{2e^x}{5}$ (k) $y = x^2 e^{-x^2}$ (r) $y = (e^{3x} + 1)^4$ (c) $y = e^{x^2 + 1}$ (l) $y = xe^{2x}$ (s) $y = e^{\frac{1}{x}}$ (d) $y = e^{2x^2 + 5}$ (m) $y = \frac{e^x + e^{-x}}{2}$ $(t) \quad y = \frac{e^x - 1}{e^x + 1}$ (e) $y = e^{3-5x}$ (f) $y = e^{-x^3 + 6x - 1}$ (u) $y = 4^{3x^2}$ (v) $y = 2^x x^2$ (n) $y = \frac{e^x - e^{-x}}{2}$ (g) $y = e^{3x^2 + 4x + 4}$ (o) $y = \frac{e^{2x}}{x}$ (h) $y = e^{9x^2 + 5x^3 - 6}$ (w) $y = x^3 - 3^x$
- 2. If $f(x) = 5^{x^2 \ln x}$, find f'(1).
- **3.** Determine the value of the positive constant *a* if $\frac{d}{dx}(a^x x^a) = 0$ when x = 1.


Answers

 $\begin{aligned} \mathbf{1.} \text{ (a) } 7e^{x} \text{ (b) } \frac{2}{5}e^{x} \text{ (c) } 2xe^{x^{2}+1} \text{ (d) } 4xe^{2x^{2}+5} \text{ (e) } -5e^{3-5x} \text{ (f) } \left(-3x^{2}+6\right)e^{-x^{3}+6x-1} \text{ (g) } \left(6x+4\right)e^{3x^{2}+4x+4} \text{ (h) } \left(15x^{2}+18x\right)e^{9x^{2}+5x^{3}-6} \right) \\ \text{(i) } e^{x}(x+1) \text{ (j) } xe^{-x}(2-x) \text{ (k) } 2xe^{-x^{2}} \left(1-x^{2}\right) \text{ (l) } e^{2x}(2x+1) \text{ (m) } \frac{1}{2} \left(e^{x}-e^{-x}\right) \text{ (n) } \frac{1}{2} \left(e^{x}+e^{-x}\right) \text{ (o) } \frac{e^{2x}(2x-1)}{x^{2}} \\ \text{(p) } \left(1-\frac{1}{2\sqrt{x}}\right)e^{x-\sqrt{x}} \text{ (q) } \frac{1}{2\sqrt{x}}e^{1+\sqrt{x}} \text{ (r) } 12e^{3x} \left(e^{3x}+1\right)^{3} \text{ (s) } -\frac{e^{\frac{1}{x}}}{x^{2}} \text{ (t) } \frac{2e^{x}}{(e^{x}+1)^{2}} \text{ (u) } 6x4^{3x^{2}} \ln 4 \text{ (v) } 2^{x+1}x+x^{2}2^{x} \ln 2 \\ \text{(w) } 3x^{2}-3^{x} \ln 3 \text{ 2. } \ln 5 \text{ 3. } e \end{aligned}$

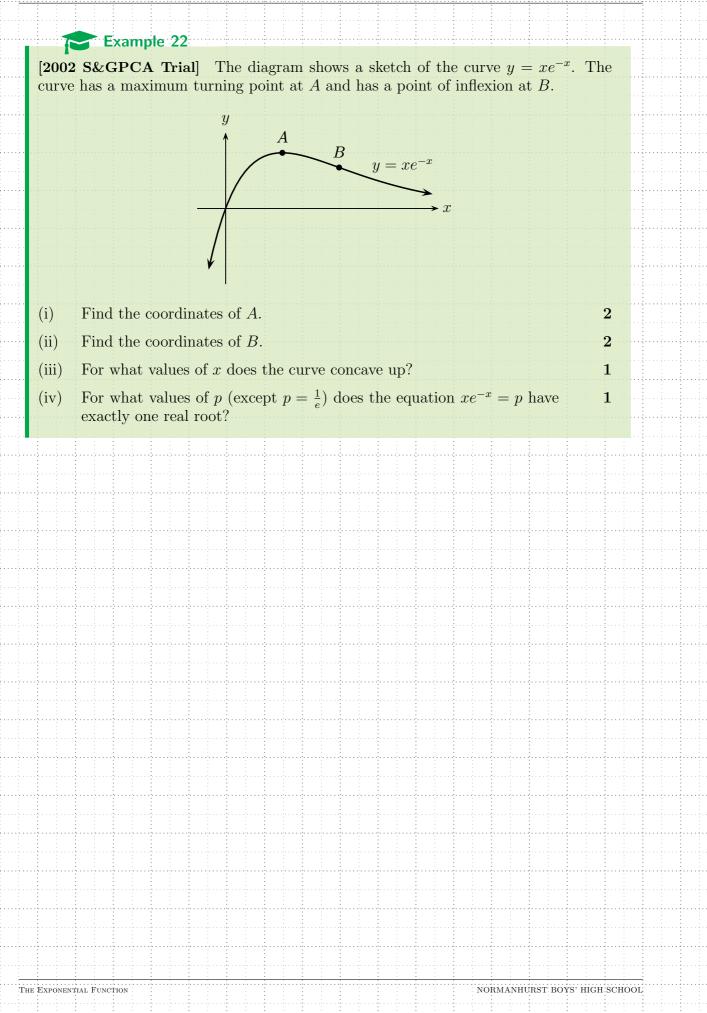

Further exercises	
• All questions	(x1) Ex 11C • All questions
Further exercises (Legacy Te	xtbooks)
(2) Ex 2C	(x1) Ex 13A
• Q1, 2 last 3 columns	
\bullet Q3-5, 8-11 last 2 columns	• Q2-4, 6
• Q12 last column	
• Q15	• Q7 last row
• Q17-19 last 2 columns	
• Q20-21 last 2 columns	

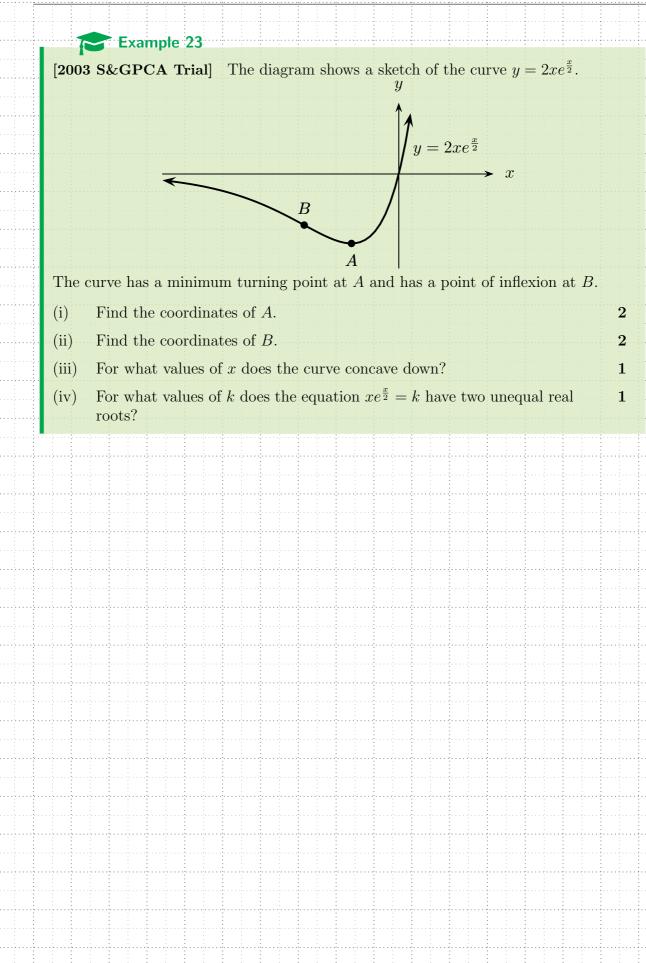
Section 2

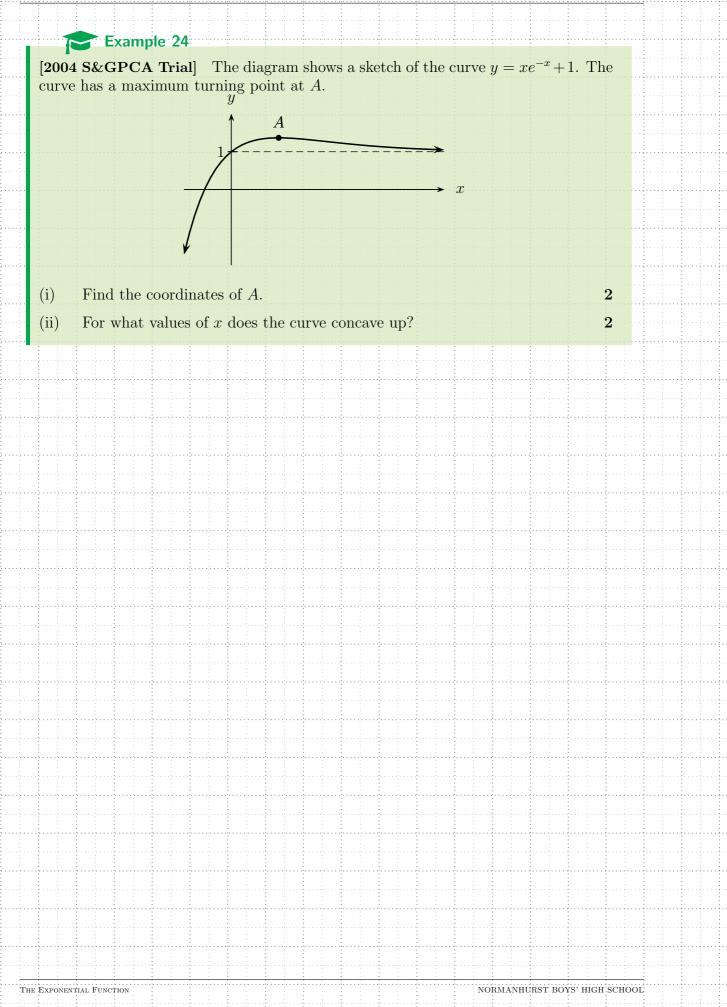
Applications of differentiation

Find the equation of the tangent to the curve $y = e^{3x}$ at x = 1. Answer: $y = 3e^{3}x - 2e^{3}$

2.2 Curve sketching Example 19


[2007 NSB Task 3]

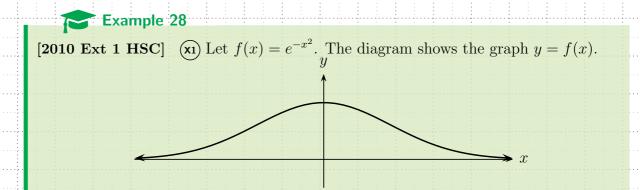

- (i) Sketch the curve $y = e^x 2$.
- (ii) On the same sketch, find graphically the number of solutions of the equation $e^x x 2 = 0$.


APPLICATIONS OF DIFFERENTIATION - CURVE SKETCHING

	Example 20			
[201]	12 Sydney Boys' Trial] For the curve $y = xe^{-x}$			
 (i)	Prove that $\frac{dy}{dx} = -e^{-x}(x-1).$		1	
(ii)	Find any stationary points and determine their natur	re.	2	
(iii)	Prove that $\frac{d^2y}{dx^2} = e^{-x}(x-2).$		1	
(iv)	Show that there is a point of inflexion on this cur coordinates of this point.	rve and find the	2	
(\mathbf{v})	Sketch the curve, showing the coordinates of the poin	t of inflexion and	1	
	any stationary points.			

Example 21 **[1999 S&GPCA Trial]** The function $g(x) = xe^{x+1}$ has first derivative $g'(x) = (1+x)e^{x+1}$ and second derivative $g''(x) = (2+x)e^{x+1}$. Find the coordinates of the stationary point and determine its nature. (i) $\mathbf{2}$ Find the coordinates of the point of inflexion. (ii) 1 By using an appropriate scale, neatly sketch the y = g(x) for $-\frac{5}{2} \le x \le \frac{1}{2}$, showing the stationary point and the point of inflexion. (iii) 3

										· · · · · · · · · · · · · · · · · · ·		•
	Exa	mple 25			•							
	8 NSB 7											
(a)	What	are the coor	$\frac{1}{x}$ dinates and	d the natu	re of th	ne sta	tionar	y poi	nt(s)	of	4	
	the cu	rve $y = \frac{e^2}{x^2}$	$\frac{1}{1}?$									
(b)		is the range		ction?							1	
(c)		this curve,			ts						2	
		, inits can ve,										
· · · · · · · · · · · · · · · · · · ·												
· · · · · · · · · · · · · · · · · · ·												
												: :
				4 · · · · 4 · · · · 4 · · · · 4 · · · ·								
			\$	····· ··· ··· ··· ···								:
												: :
						· · · · · · · · · · · · · · · · · · ·						· · · ·
· · · · · · · · · · · · · · · · · · ·												
												:
										•••••• • •		: : :
				· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·									:
				· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·												: :
												: :
· · · · · · · · · · · · · · · · · · ·						• • • • • • • • • • • • • • • • • • •						· · · ·
												:
· · · · · · · · · · · · · · · · · · ·												
												· · · ·
									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		


Example 26

[1995 3U HSC Q4] (x1) Consider the function $f(x) = \frac{e^x}{3 + e^x}$. Note that e^x is always positive, and that f(x) is defined for all real x. Show that f(x) has no stationary points. $\mathbf{2}$ (a)(b) Find the coordinates of the points of inflexion, given that 1 $f''(x) = \frac{3e^x \left(3 - e^x\right)}{\left(3 + e^x\right)^3}$ Show that 0 < f(x) < 1 for all x. (c)1 (d) Describe the behaviour of f(x) for very large positive and very large 2 negative values of x, i.e. as $x \to \infty$ and $x \to -\infty$. (e) Sketch the curve y = f(x). $\mathbf{2}$

																							• • • •									
 ,	Λοο	LIG	ATT	ON	5 OF		PPP	DEN		TIO	NT	Cu	DVE	er/	- TPT				•				•								23	
 			AII		5 01	DI	FFL.	nEN	IIA	110		00	πv Ε				÷	<u></u>	······	<u></u>		<u></u>	• • • •				<u></u> .			<u></u>		
																							*									
																							•		 							
																	: :	<u>.</u>	: :	 					 					•••••		
																							- - - - - - -		 	 						
																			 :				•			 			· · · · · · ·			
	•••••		••••																													
																							•									
				,																			(
																			• • • •				• • • •			 				•		
	•••••	: : :															: 		: 				: :		 	 				•••••		
																							- - - -			 						
 	•••••	· · · · .;																							 	 				•••••		
																			 :				•			 				•••••		
 	•••••	•••••														 		 	 													
																			·····				•									
		•••••																		 			- 		 	 				•••••		
	•••••	•••••	• • • •													 			÷				•		 	 				•••••	•••••	
 																				 			· · · · · ·									
																			÷				• • • •			 				•••••		
	•••••	: 														 	: 		····				: 		 	 				•••••		
			1	= . F	ur	the	r e	γγρ	rci	SAS						·····						· · · · · ·	· · · · · · ·									
																	6		F -	- 1	1 D		•									
		A	● E	∕x All	9D զւ	iest	tio	ns									. (<u> </u>		1												
					90	100													• A	All (que	esti	ons	3								
																							*		 	 						
 			1 2 3	= F	ur	the	er e	exe	rci	ses	5 (I	Leg	gac	у	Te	xtb	00	oks)		:											
 		2)	E	x 2	2D												(X1	$\mathbf{E}\mathbf{x}$	13	BB											
																			• (Q6-9	9											
	•			Λ 11		1001	tio	na														· · · · · · · · · ·										
			•	ΑI	qu	ies	0101	115) 12	-22											
		•		· · · · · ·																												
 - TN	10BA	JAN	нш	3ST	BOY	s, ні	СН	СНО	101							<u>.</u>									 	 Тиг	Eyr	ONEN	TIAL I	FING	TION	
 1																	· ·						•		 	 1115	LAP					
 																	•						•						• ÷			

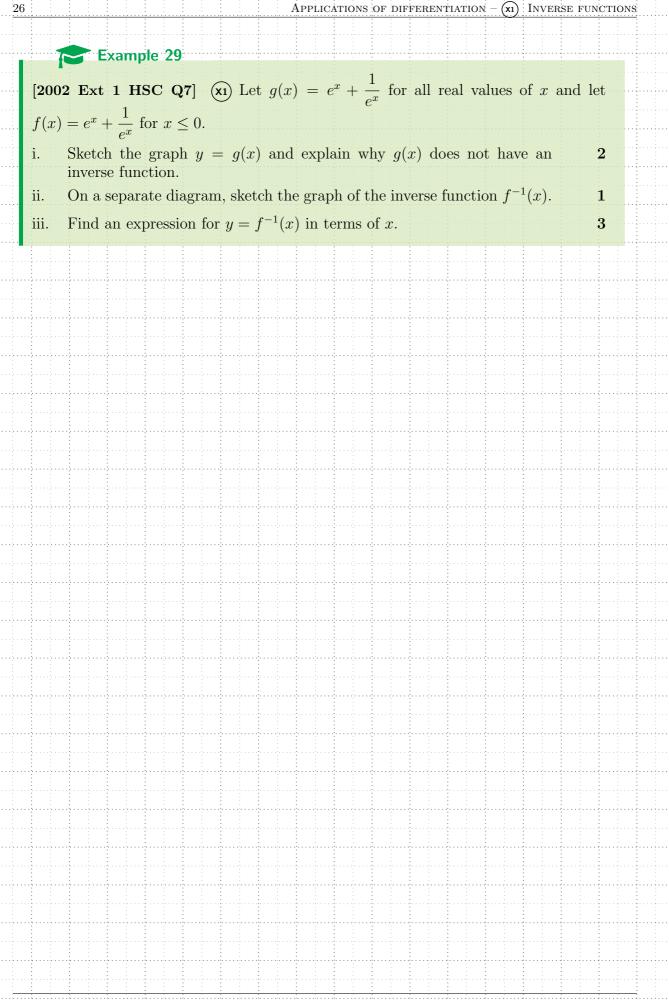
											\sim		-					
А	PPL	ICÁTI	IONS	:OF	D	IFFF	EREI	NTL	ATIO	N: —	(X1):	INVE	RSE	FU	UN:C]	ΓIΟ	NS

2.3	3 (x	i) Invers	se fur	nctio	ns		*								
		Exam					· · · · · · · · · · · · · · · · · · ·								 · · · · ·
	an an an an an an 📥 an	3U HSC]			der t	he fur	ctior	f(x)	$= e^x$	_ 1 _	r				
	(i)	Show that	\sim										2		 · · · · · ·
							occi	115 00	<i>u</i> – 0	•					 · · · · · · · · · · · · · · · · · · ·
	(ii)	Deduce th						<i>m</i> 1					1		
· • · · · · • · ·	(iii)	On the sa								y = x.			2		
	(iv)	Find the	inverse	e func	tion	of $g(x)$) = e	$x^{x} - 1.$					1		 · · · · · · · · · · · · · · · · · · ·
	(v)	State the	domai	in of g	$y^{-1}(x)$).							1		
	(vi)	For what	values	s of x	is log	$g_e(1 + $	$x) \leq$	x? Ju	ıstify	your a	nswer.		2		 · · · · · · · · ·
••••••	••••••••••••••••••••••••••••••••••••••						•••••								
							· · · · · · · · · · · · · · · · · · ·								
							*								 · · · · · · · · · · · · · · · · · · ·
••••••	••••••••••••••••••••••••••••••••••••••														
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · ·										
															 · · · · · · · · · · · · · · · · · · ·
••••••	\$\$		· · · · · · · · · · · · · · · · · · ·					•							
							•								 · · · · · · · · · · · · · · · · · · ·
••••••	•••••• • • • • • • • • • • • • • • • •														
	· · · · · · · · · · · · · · · · · · ·														
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •						•								 · · · · · · · · · · · · · · · · · · ·
••••••	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •													
															 · · · · · · · · · · · · · · · · · · ·
											• • • • • • • • • • • • • • • • • • • •				 · · · · · · · · · · · · · · · · · · ·
															 · · · · · · · · · · · · · · · · · · ·
															 · · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·														 · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •						•								
															 · · · · · · · · · · · · · · · · · · ·
							•								· · · · ·
The	Exponent	TAL FUNCTION									NORMANH	URST BOYS	S' HIGH SC	HOOL	
÷									:						

- (a) The graph has two points of inflexion. Find the x coordinates of these points.
- (b) Explain why the domain of f(x) must be restricted if f(x) is to have an inverse function.

(c) Find a formula for $f^{-1}(x)$ if the domain of f(x) is restricted to $x \ge 0$.

(d) State the domain of $f^{-1}(x)$.


(e) Sketch of the curve $f^{-1}(x)$.

3

1

 $\mathbf{2}$

1

The Exponential Function

NORMANHURST BOYS' HIGH SCHOOL

2.4 🏏 Taylor Series expansion Important note A Not in the syllabus, but provided here as an enrichment exercise. E Steps To find the Taylor Series expansion to e^x about x = 0: If e^x can be approximated by $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$ then find a_0 , a_1 , a_2 , a_3 etc to obtain the polynomial approximation. 1. To obtain a_0 , set x = 0: $f(0) = \dots = \dots$ 2. To obtain a_1 , differentiate f(x) and let x = 0: f'(x) = $f'(0) = a_1 = \ldots = \ldots$ 3. Differentiate f'(x) and let x = 0 to obtain a_2 : $f''(x) = \dots$ $f''(0) = \dots$ == $\therefore a_2 = \frac{1}{2}$ Differentiate f''(x) and let x = 0 to obtain a_3 : 4. $f^{(3)}(x) = \dots$ $f^{(3)}(0) = \dots$ $= 1 \cdots 1 \cdots 1 = 1 \cdots 1$ $\therefore a_3 = \frac{1}{3 \times 2 \times 1} = \dots$ NORMANHURST BOYS' HIGH SCHOOL The Exponential Function

(continued from previous page...)

5. Differentiate $f^{(3)}(x)$ and let x = 0 to obtain a_4 :

$$f^{(4)}(x) = \dots$$

 $f^{(4)}(0) =$

$$= \dots = \dots$$
$$\therefore a_4 = \frac{1}{4 \times 3 \times 2 \times 1} =$$

6. Generalise:

E Steps

$$f(x) =$$

🕜 GeoGebra

What happens when you differentiate the Taylor polynomial for $f(x) = e^{x}$?

Try the TaylorPolynomial function with parameter exp(x) about x = 0 and a degree of your choice!

See also: How does a calculator calculate $\sin x$? (University of Melbourne)

Section 3

Rates of change

Knowledge

Examine the rate of change in exponential functions

🗘 Skills

Simplify and solve exponential and logarithmic functions algebraically

Vunderstanding

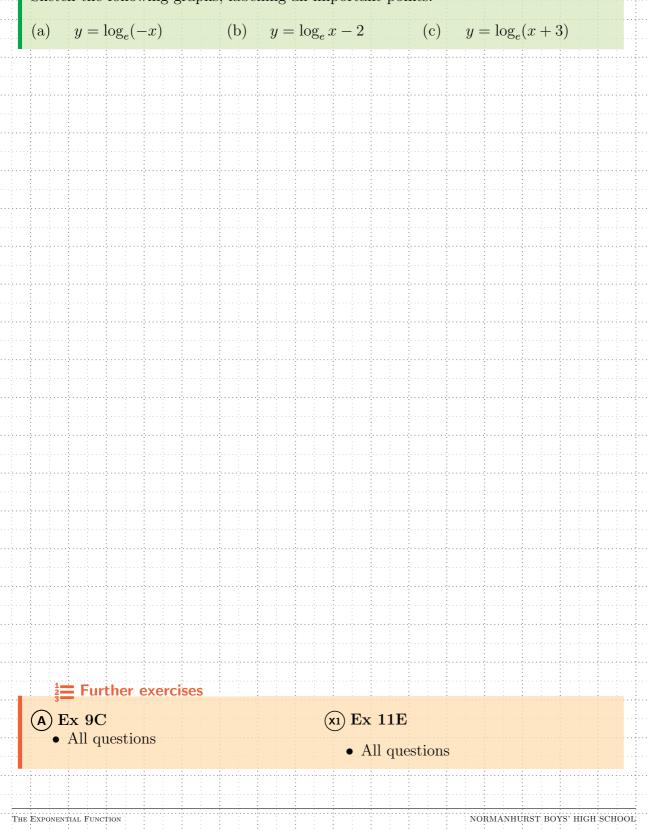
Applications of exponential and logarithmic functions in real world contexts

Solution By the end of this section am I able to:

- 9.5 Establish and use the algebraic properties of exponential functions to simplify and solve problems
- 9.6 Solve problems involving exponential functions in a variety of practical and abstract contexts, using technology, and algebraically in simple cases
- 9.8 Work with natural logarithms in a variety of practical and abstract contexts
- 9.9 Graph a logarithmic function $y = \log_a x$ for a > 0 and its transformations $y = k \log_a x + c$, using technology or otherwise, where k and c are constants.
- 9.10 Solve problems involving indices using (natural) logarithms

Important note

- Use exactly the same rules for the previous work done on *Rates of change* from the *Introduction to Differentiation* topic
- Replace the polynomial-like functions with the exponential function
- Be prepared to use some logarithms base *e* to finish off the problem.


3.1 \mathbf{C} Logarithms base e

Important note

Ensure you review work from Topic 6 - Indices and Logarithms!

Example 30

Sketch the following graphs, labelling all important points:

3.2 Exponential rates of change Example 31

(Pender et al., 2019b, p.528) The number B of bacteria in a laboratory culture is growing according to the formula $B = 4\,000e^{0.1t}$, where t is the time in hours after the experiment was started. Answer these questions correct to three significant figures. (a) How many bacteria are there after 5 hours?

(b) Find the rate $\frac{dB}{dt}$ at which the number of bacteria is increasing, and show that

 $\frac{dB}{dt} = 0.1 \times B$

- (c) At what rate are the bacteria increasing after 5 hours?
- (d) What is the average rate of increase over the first five hours?
- (e) When are there 10 000 bacteria?
- (f) When are the bacteria increasing by 10 000 per hour?

Answer: (a) 6 590 (b) Show (c) 659 bacteria/hr (d) 518 bacteria/hr (e) \approx 9.16 hrs (f) \approx 32.2 hrs

Important note

Part (b) is asking you to \dots the time variable with the dependent variable. More coming in the actual (xi) *Rates of Change* topic.

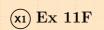
NORMANHURST BOYS' HIGH SCHOOL

32											:		<u>.</u>		: 	RA	TES	OF	CH	ANG	GE	- E	XPC	NEI	NTIA	L RA	ΓĖS	OF C	HA	NGE		 		
														•															•			 		
				F	xa	mp	le	32			: 	÷	:	• • • •									:									 		, ,
	[0]	-								•					1	•	1	т	11_	1:	.1.4	•	4			⊥ ⊥ 1								
									t inte																							 		
									Гhe l	Igni		uer	ISIT	у, ₋	1 10	ıx,	a u	ISU	ιΠC	ce a	5 11	iet	res	be	100	v une	su.	riac	e					
	OI	une	: 1a	ĸe	15	givi	en	IJу					T		Ae	-ks																 		
													1		110																	 		
. <u>.</u> .	wł	here	A	ar	ıd .	k a	re	cor	nstan	ts.																					••••	 		
	(i)		W	rit	e d	low	n t	he	valu	e of	A																		1			 ;		
••••	(ii)	\mathbf{T}	ho	lial	ht i	inte	ong	ity 6	me	tra	ae l	مام		the	5 611	rfo	<u>co</u>	\mathbf{f}	the	- - 10	ako	ie	10	00	luv			2			 		
)	±.	iic	ng	110 1	1100	.115	10y 0	IIIC	,010	JD L		<i>,</i> , , , , , , , , , , , , , , , , , ,	0110	, su	.110		51	0110	5 10	inc	, 10	10	00	iux.						 		
			Fi	nd	$^{\mathrm{th}}$	le v	alu	ie c	of k .																						• • • • •	 	••••	
	(ii	i)							lux p	or	me	otro	ic	th	o li	aht	in	one	it,	v d	0.01	roa	cin	ი რ	m	otrog			2			 		
	1 (11	1)							ce of					011		giit	111		510	y u		lua	5111	gu	1110	.0105			4			 		
	•						. ai		00 01					•		•						•		•			•		•					
					: : :						: 			: : :• • • • •																		 		
					: : :							÷	; ;	:								: 					•		: :			 		
					: : :					÷		÷		: 																		 	· · · · .	
••••••													; ;						••••			: 					•					 	•••••	
••••••	÷						•••••	••••••				÷							••••	•••••							• • • • •		• • • • • • •		••••	 · · · · · ·	••••	
					•									•					• • • • •										• • •			 · · · · · ·		
•••••					 			•••••				 	 	· · · · ·					••••	•••••			() 						(•••••	 		• •
					· · · · · ·							:::::::::::::::::::::::::::::::::::::::		•••••• • •					· · · · ·			 												
•••••					 			•••••						 - - -					· · · · ·	•••••			· · · · · ·				:		(•••••	 		
					•									•																				
																						-		•								 · · · · · · · · ·		
										÷	: 												: 								••••	 		
														•															• • •			 		
•	÷	•			: : · · · · ·		•••••							: 					••••							• • • • •	• • • • •				•••••	 	••••	
					• • • •									• • • • • • •															•			 		
•	· · · · ·							: 											•••••	•••••							·				• • • • •	 		
	: :				•									•													: :		•			 · · · · · · · · ·		
	÷							•••••						•						•••••											••••	 	••••	
					- - - - - -									- - - - - -										•					- - - - -			 · · · · · · · ·		
•••••					••••••••••••••••••••••••••••••••••••••			•						•••••					•••••	•••••			•••••				• • • • • •				• • • • •	 		
					• • •									•										•			*		•					
					· · · · · · ·									•															· · · · · · ·		••••	 		
Tur	- Evn	ONENT	STAT E	ETINO	tron						. 11							1.1				• 11	NO	DMA	NUT	BST B	ve?	uicu	SCU	OOT		 		

The Exponential Function

NORMANHURST BOYS' HIGH SCHOOL

Example 33


[2009 2U HSC] Radium decays at a rate proportional to the amount of radium present. That is, if Q(t) is the amount of radium present at time t, then $Q = Ae^{-kt}$, where k is a positive constant and A is the amount present at t = 0. It takes 1 600 years for the amount of radium to reduce by half.

- (i) Find the value of k.
- (ii) A factory site is contaminated with radium. The amount of radium on the site is currently three times the safe level.

How many years will it be before the amount of radium reaches the safe level?

; **F** Further exercises F → OF

A Ex 9F • All questions

• All questions

NORMANHURST BOYS' HIGH SCHOOL

The Exponential Function

33

 $\mathbf{2}$

 $\mathbf{2}$

References

Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019a). CambridgeMATHS Stage 6 Mathematics Advanced Year 11 (1st ed.). Cambridge Education.

Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019b). CambridgeMATHS Stage 6 Mathematics Extension 1 Year 11 (1st ed.). Cambridge Education.